1(5) DATA SHEET

Manual Call Point IP66/67

CS-MCP WP Ex

Part no. 5210034-xxA

G010989 System: CFD5000

About the datasheet

This datasheet contains information about the following products:

Product name	Part no.
CS-MCP WP Ex	5210034-00A
CS-MCP WP Ex, UL listed	5210034-10A (Soon to be released)

General description

The CS-MCP WP Ex is an intrinsically safe addressable manual call point. The selected material and the encapsulation, with ingress protection IP66/67, makes it very suitable for harsh environment.

A fire alarm is activated by breaking the glass that has a protective plastic coating to prevent operator injury. A LED on the front of the call point indicates activation of the fire alarm and the LED remains lit until the broken glass has been replaced and the fire alarm has been reset on the control panel of the fire detection system.

The CS-MCP WP Ex is designed to comply with the standards for the industrial, maritime, offshore and rolling stock markets up to Safety Integrity Level 2 (SIL 2).

SIGNALING

Data

Sensor method Glass break
Sensor element Limit switch
Operating voltage 16–38 VDC

Operating current:

Normal condition Appr. 0.1 mA
 Alarm condition with Appr. 1.6 mA
 LED activated

Loop communication

protocol

Cable dimension M20 ø 6–12 mm Material: Black polyamide

IDAxt

Cable terminals 2.5 mm²

Operating temperature $-40 \,^{\circ}\text{C}$ to $+70 \,^{\circ}\text{C}$ Storage temperature $-50 \,^{\circ}\text{C}$ to $+70 \,^{\circ}\text{C}$ Relative humidity $\leq 95 \,^{\circ}\text{RH}$

non-condensing

 $\begin{array}{lll} \mbox{Addressing method} & \mbox{DIP switch} \\ \mbox{Ingress protection} & \mbox{IP66/67} \\ \mbox{Material} & \mbox{PC/ABS} \\ \mbox{Weight} & 250 \ \mbox{g} \pm 5\% \\ \mbox{Colour} & \mbox{Red (RAL 3001)} \\ \mbox{Loop cable requirement} & \mbox{See the Installation \& Commissioning manual} \\ \end{array}$

Certifications

Manual call point IECEx IMQ 16.0012X IMQ 16 ATEX 018 X

€0470

 U_i : 28VDC, I_i : 93mA, P_i : 653mW C_i : 532pF, L_i : negligible

ConsiliumConsilium Marine & Safety AB

Salsmästaregatan 21

SE-422 46 Hisings Backa

C5-MCP WP Ex

Ser.No.: YYWWXXXXX

WARNING -

POTENTIAL ELECTROSTATIC CHARGING HAZARD - SEE INSTRUCTIONS.

Made in UK G021854

The specifications described herein are subject to change without notice.

Data sheet no. 5210034-xxA_CS-MCP WP Ex_M_EN_2020_L

DATA SHEET 2(5)

ATEX Ex ia Certificate No:

> IMQ16ATEX020X Certified according to: IEC 60079-0. IEC

60079-11 **ξχ** ∥ 1G

IECEx Ex ia Certificate No:

> IECEx IMQ16.0013X Certified according to: IEC 60079-0,IEC 60079-11 Ex ia IIC T5 Ga

-40 °C ≤ Ta ≤ +70 °C

MED Certificate No: 2531-MED-

CMC10098(Module B)

2531-MED-

CMA10017(Module D) Certified according to: EN54-17, EN54-18, IEC60533, IEC60092-504

2531/yyyy yyyy = year of production

CPR Certificate No:

2531-CPR-CSP10869

DOC No: DOC-001472 Certified according to:

EN 54-17, EN 54-18

UL (Pending) Listing No:

E506803

UL listed to Class 1, Div 1,

Groups A - D

SIL Certificate No:

TÜV NORD 44 788

13082116

SIL2 certified according to:

IEC 61508

Ex parameters

28 V Maximum voltage (U_i) Maximum current (I;) 93 mA 532 pF Internal capacitance (C_i) Internal inductance (L_i) Negligible 0.653 W Maximum power (P_i)

Functional Safety Data

Туре HFT 0 SFF 93 % $\mathsf{PFD}_{\mathsf{avg}}$ 2.77×10^{-4}

 PFD_{avg} is calculated for MTTR 8 h and proof test interval 1 year.

Suitable for use in SIL 1 and SIL 2 environments.

Accessories

Spare glass (10pcs.) Part no. 5200075-00A Resettable element Part no. 5200144-00A

Data for built-in Short Circuit Isolator (SCI)

Ic max (Maximum Continuous 500 mA

current)

Is max (Maximum Switching current) 800 mA Current when short circuited $< 1 \, \text{mA}$

(IL max)

16 ± 3 VDC Open to Close voltage Open to Close, maximum load ≈2 kΩ

expressed in ohms on the

non-energized side

Close to Open voltage 12 ± 3 VDC

Address switch

The loop units are identified by a physical address. The address number is set on an 8 pole DIP switch located on the loop unit. (For settings use a pointed tool of suitable size.)

G011112

1 to 150 are valid addresses. The DIP switch value follows the binary system.

Connection

NOTE!

When used in a hazardous area the loop unit must be connected to a CS-Isolator. Refer to the 5210050-00A CS-Isolator data sheet for connection examples.

The specifications described herein are subject to change without notice.

Data sheet no. 5210034-xxA_CS-MCP WP Ex_M_EN_2020_L

3(5) DATA SHEET

Local intelligence via an integrated CPU

The integrated CPU makes it possible to make decisions locally, like evaluation of the alarm condition.

IDAxt protocol

The IDAxt protocol is an extension of Consilium's communication protocol (IDA) and meets the demands on data integrity, reliability and robustness required for use in SIL 1 and SIL 2 safety functions and safety systems.

Periodic BIST

The Periodic Built-In Self-Test is a central mechanism which the system uses to ensure long proof test intervals.

Countermeasures (defences) have been implemented in order to address the fault modes (threats) in the fire detection system. These countermeasures are done in order to increase the confidence in the system.

The system has two types of Built-In Self-Tests (BIST). The first BIST is made continuously; for instance when reading A/D values from hardware. This typically involves evaluation of the read value to determine if the hardware is broken; i.e. gives measurements outside an acceptable interval.

The second BIST is the Periodic Built-In Self-Test (Periodic BIST) which is made once every five minutes in order to verify the safety function by testing communication paths. All internal communication paths and all testable parts of the loop-units are included in the Periodic BIST mechanism, to verify the whole path from detection to reporting (fire) status.

The system creates a log with the results of the Periodic BIST. This log can be extracted from the system with a USB memory stick.

Short Circuit Isolator (SCI)

The built-in SCI isolates short circuits on the loop-line and also has a probe function for evaluating a short circuit. The SCI ensures that the fire detection system does not lose contact with

the loop units when there is one short circuit on the loop-line. The probe function makes it possible to reset the short circuit condition without restart of the loop-line.

Cleaning

<u>/!\</u>

WARNING!

Potential electrostatic charging hazard

If the unit requires cleaning, only clean exterior with a damp cloth to avoid electrostatic charge build up.

Testing & Maintenance

The call point can be tested with a special key, included in the delivery.

Cover removal

G003072

- 1. Remove the four cover fixing screws.
- 2. Place the edge of a large flat bladed screwdriver into the slot between the cover and back box, as shown in picture, and gently twist until the latches are disengaged.
- 3. Pull cover away from the back box.

Data sheet no. 5210034-xxA_CS-MCP WP Ex_M_EN_2020_L

DATA SHEET 4(5)

Replace glass

Dimensions (mm)

5(5) DATA SHEET

